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Synopsis 

Experimental and simulation studies of optimization of the melt spinning process were carried 
out for nylon 6 fibers. The experiment and process simulation demonstrated that one criterion that 
can be applied in scaling up an optimized melt spinning process is to achieve the similar real time 
history of temperature and deformation rate in the spinway. Some aspects of the experiments and 
process simulation are discussed, together with the results of real time history analysis for a case 
of nylon 6 spinning. 

INTRODUCTION 

In industrial applications, the most important problems of melt spinning are: 
(1) the optimization of the process with respect to'a given fiber property, a set 
of properties, a set of properties coupled with some other factors, such as pro- 
duction rate, quality of the final product, product uniformity, etc.; (2) the transfer 
of an optimized process from one type of equipment to some other type; and (3) 
the modifications of an optimized process to account for changes in product 
specifications, alterations in the spinway, etc. 

The present understanding of melt spinning and drawing processes is, in most 
cases, insufficient to predict without extensive experimentation the optimum 
conditions for a given product. As a rule, these goals are achieved by various 
types of experimental work. 

The transfer of an optimized process from one type of equipment to another 
on one hand and the modifications in the process to account for changes in pro- 
duction rate, alterations in equipment design, etc. on the other hand can be 
greatly facilitated by means of modern computational and simulation tech- 
niques. 

In this article we describe a method that is suitable to solve the problems de- 
scribed above. The principle of the method is based on the assumption that the 
properties of the fiber are uniquely defined by its temperature and deformation 
rate history. The mathematical problem is, therefore, to establish the changes 
in operational variables to match the temperature and deformation rate history 
of the filaments when equipment design or production rates are changed. 

THEORY 

Experimental and analytical studies of the melt spinning process have been 
carried out by many authors. Most of the studies were concerned with the 
rheological and heat transfer aspects of the melt spinning proce~s.l-~ Recently, 
some authors investigated the change of fiber structure in the spinway by use 
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of x-ray and birefringence  device^.^?^ The findings from these studies help to 
understand the dynamics of filament thinning, filament quenching, and change 
of fiber structure in the melt spinning process. 

Referring to Figure 1, which depicts the schematics of a melt spinning process, 
let us consider a small particle of the fiber material leaving the spinneret a t  t = 
0 ( t  denoting the real time) and traveling down the spinway toward the take-up 
roll while being subjected to a certain conditioning history. For simplicity, we 
assume that at a position z (or time t ) ,  condition of the fiber material is uniform 
across the radius of filament. In other words, we disregard the distributed nature 
of the system and treat it as a lumped parameter system. Suppose that the state 
of fiber material can be described completely by n state variables of X I ,  x 2 ,  . . . 
x ,  (or x in shorthand notation) which vary with time by the dynamic relation 
of 

dxi 
- = f i ( X 1 ,  x 2 .  . . x,, u1, uq. . . u,) 
dt 

where u; indicates the process control variables. If the objective function J (the 
tensile strength, for example) to be optimized can be expressed by 

J = F ( x ( t f ) )  + L(x,u)dt J tf 
then the problem of optimizing the melt spinning process to achieve a desired 
optimal value of J is mainly that of a numerical computation based on the 
mathematical principles of optimization. 

The real problem we face in spinning process analysis, like in many other 
physical processes, is that we do not have complete knowledge of the relations, 
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J 

SCHEMATICS OF A 
SPINNING SYSTEM 

Fig. 1. Schematics of a spinning system. z = position; t = time; x = state variables; J = objective 
function. 
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such as eqs. (1)  and (2). Thus, the only available way of optimizing the melting 
spinning process is experimentation. 

After an optimal process is established by experimental procedure, it is often 
desirable to scale up the process while achieving the same objective. Again, owing 
to the lack of knowledge of the relations of eqs. (1) and ( 2 ) ,  the scale-up work 
necessitates an experimental optimization. In this case, however, if the real time 
history of the state variables, x ( t ) ,  is known for the first process, then the second 
process, i.e., the scaled-up process, can be expected to yield a same value of the 
objective function J if the history of x(t) is somehow kept the same. This is so 
although we do not know the relation of eq. (2). In other words, between process 
1 and process 2, if 

x l ( t )  = x2(t) for t = 0-  tf ( 3 4  

J1 = J2 (3b) 
Thus, scale-up of an optimal process can be achieved by achieving the similarity 
of the history of state variables. 

For the above-mentioned simplified lumped parameter system of a melt 
spinning process, we consider the filament temperature T( t )  and the rate of 
filament thinning d V ( t ) / d z  as the two state variables of the system which affect 
predominantly the changes in properties of the fiber during spinning. Denoting 
the temperature history and the thinning rate history of the filament in the first 
optimized melt spinning process by Tl( t )  and d V l ( t ) / d z ,  respectively, and those 
of the second scaled-up process by Tz(t)  and d V z ( t ) / d z  for t = 0 - tf, we hy- 
pothesize that, if 

Tl( t )  = T2(t) ( 4 4  

d V l ( t ) / d z  = d V z ( t ) / d z  (4b) 

then we can expect 

and 

then 

J1= J2 

The idea underlying this hypothesis is that as long as the temperature history 
and deformation rate history of a fiber material starting from the same initial 
state are the same, the changes in the material characteristics, such as molecular 
weight distribution and morphology, should also be the same. 

Now, let us examine whether it is possible to achieve the relations of (4a) and 
(4b) in a melt spinning process, and if it is, then under what condition. Referring 
to Figure 2, in which two spinning processes are compared, let w, H,  D, and V 
denote the mass rate of spinning material, height of the spinway, filament di- 
ameter, and filament velocity, respectively, and let the numeral subscripts 1 and 
2 refer to processes 1 and 2. The position variable z is related to the velocity V 

d z  = V d t  ( 5 )  
by 

Therefore, 
d V  1 d V  d l n V  
d z  V d t  d t  

- - 



1168 KWON, BUTLER, AND PREVORSEK 

PROCESS I PROCESS 2 

T "2 

Fig. 2. Two spinning processes. 

So, the relation of eq. (4b) dictates 

V,(t)/Vl(O) = V2(t)/V2(0) = s ( t )  (6b) 

which means that the stretch ratio based on the initial filament velocity, s ( t ) ,  
is the same between process 1 and process 2.  

If we set the scale-up factors for the mass rate and the filament diameter to 
take-up to c and r ,  respectively, 

w2 = cw1 (7) 

D2f = rDlf  (8)  

where the subscript f indicates the final take-up point in the spinway. The mass 
balance at  the take-up point requires 

and 

v2, = ( c / r2 )v l /  (9) 

and eq. (6b) extends eq. (9) to 

V d t )  = (c/r2)Vl(t)  (10a) 

VdO) = (c/r2)V1(0) (lob) 

D2(t) = rDl(t) (10c) 

The spinway height H is given by 

H ~ / H I  = V2(0)/V,(O) = c/r2 (11) 

The equality relations of (4a) and (4b) require the equality of the elongational 
stress o(t)  between processes 1 and 2.  Under the one-dimensional elongation, 
o( t )  is given by 
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o(t)  = V T [ d V ( t ) / d Z l  (12) 

where T]T is the tensile viscosity. Tensile viscosity has been found to be a func- 
tion of the temperature only8 or to be a function of temperature and elongation 
rate, d V / d ~ . ~  In either case, eqs. (4a) and (4b) would result in 

VTl(t) = V T z ( t )  (13) 

and 

Ol(t) = (14) 

The “rheological force” Frheo has been defined conventionally by 

Frheo(t) = o(t)  x 0.785[0(t)12 (15) 

In view of eqs. (10c) and (14), we have 

Frheo Z ( t )  = r2Frheo l ( t )  (16) 

Equations (6)-(16) are the relations which would result if the requirements 
of eqs. (4a) and (4b) were fulfilled. Now, we have to ask under what conditions 
these requirements can be realized. 

Obviously, the first requirement is the controllability of filament temperature 
T(t)  for achieving Tz(t) = Tl(t). Equation (4a) implies 

d T 1 (t  ) / d t  = d Tz( t ) /d t  (17) 

For the simplified one-dimensional system, dynamics of the filament quenching 
can be approximated by 

pC,(0.785D2)dz (dT/dt ) 
(18) 

where p, C,, h,, h,, and T, represent the density of fiber, heat capacity of fiber, 
convective heat transfer coefficient, radiative heat transfer coefficient, and the 
ambient air temperature. T k  and Tsk denote the filament temperature and 
spinway wall temperature in the Kelvin scale. Equation (18) simplifies to 

= -3.140 d~ h,(T - T,) - 3.140 dz hr(Tk4 - Tsk4) 

dT/dt = (--4/pC,D)h,(T - T,) - (4/pC,D)hr(Tk4 - Tsk4) (19) 
Equation (17) necessitates the relation 

Thus, there are four variables that can be manipulated in eq. (20) to achieve the 
equality of eq. (17): h,, hr, T,, and T s k .  

Consider a case, for example, in which D l ( t )  = Dz( t )  but the speed of filament 
is increased by a factor of 2. When the quench air and filament flow in parallel 
direction, the convective heat transfer coefficient h, is correlated to air flow 
condition by Muller’s correlation,1° i.e., 

h,D/k, = 0.42( VD~,/p,)03~ .(21) 
where k,, pa, and pa denote the thermal conductivity, density, and viscosity of 
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air, respectively. Thus, increase of V raises the value of h,; and in order to 
maintain the equality of eq. (a), it is necessary to raise T,,(t) and/or Tsk,(t) to 
offset the effect. One means of providing the variation of Tsk is the heated 
sleeves surrounding the spinway. 

In this way, the controllability of filament temperature hinges on whether the 
equality of eq. (20) can be maintained by the manipulation of the above-said four 
variables within the allowable and attainable ranges. However, it is physically 
impossible to manipulate these variables from point to point. Practically, the 
only feasible way of manipulating these variables is to do so by segments of finite 
lengths. Therefore, in a rigorous sense, the control can be achieved only ap- 
proximately. Experimental runs to be described later have shown, however, 
that the actual controllability of temperature in the scale-up of a moderate ratio 
is fairly good. 

After the temperature controllability, another controllability problem is related 
to the rheological force, Frheo, given by eq. (15). Denoting the take-up tension 
by FT, Frheo at position z in a spinway of height H can be approximated by 

H H 
Frheo(Z) = FT -k J pgxD2 d z / 4  - J 7 x D  dz - w [ V f  - V ( z ) ]  (22) 

where g is the gravity constant and 7 is the skin friction at filament surface owing 
to the air drag. Thus, the second, third, and fourth terms on the right-hand side 
are for the filament weight effect, air drag effect, and inertia effect on the filament 
tension, respectively. 

Equations (14) and (15) necessitate the relation 

or 

r2Frheol(t) = Frheoz(t) (23) 

If in eq. (22) Frheo(Z) = FT, that is, the total sum of the effects of gravity, air drag, 
and inertia is negligible relative to FT, then it can be shown* that eq. (23) holds 
by itself once the temperature is controllable. When this is not the case, eqs. 
(22) and (23) require 

Equality of eq. (24) is achieved to a good approximation if 

which means, resulting from eq. (9), 

Vl ( t )  = 

Otherwise the equality does not hold strictly and the requirement for eq. (23) 
cannot be held rigorously. However, as shown by the experimental results, the 



MELT SPINNING 1171 

equality can be maintained approximately when the scale-up ratio is mod- 
erate. 

In order to minimize the deviations between Tl ( t ) ,  dVl(t)/dz, and T2(t), 
dV2(t)/dz, one can use the Pontryagin's minimum principlell to minimize the 
deviation function: 

by optimal selection of T,(t), Tsk(t) ,  and V,(t), where V,(t) is the quench air 
velocity which affects the convective heat transfer coefficient h, and the skin 
friction owing to air drag, 7. Details of this numerical procedure will be described 
elsewhere. Here, it is sufficient to say that the result of this procedure provides 
the guidance for varying the values of T,, Tsk, and V,  as the function of the po- 
sition. 

EXPERIMENTAL 

Schematics of the experimental spinning system is shown in Figure 3. It is 
similar to an ordinary melt spinning system with the spinneret die a t  top and 
the take-up roll a t  the bottom. The special feature of this spinning system is 
the series of sleeves which are stacked in vertical direction, surrounding the 
spinway. The individual sleeve had an internal diameter of 10 cm (4 in.) and 
a length of 15 cm (6 in.), and the sidewall is wrapped with heating band and in- 

SLEEVE 

SPI NNERET 

INOIVIOUAL SLEEVE 
SIDE VIEW 

OBSERVATION 
AIR WINOOW 

'ACCESS HOLE 
-111 
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,HINGE 

FLANGE 

SLEEVE 
TOP VIEW 

I 
OPENING 

TAKE-UP ROLL SLIT 

Fig. 3. Schematics of experimental spinning system. 

** A indicates the magnitudeof deviations of T2(t) and dVz/dz(t) from Tl ( t )  anddVl/dz(t). p 
is a scale factor, and its numerical value is chosen such that [Tl(t)  - Tz(t)]' and [dV& - dV2/dzl2 
are of comparable magnitudes numerically. 
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sulation materials. The sleeve is made of two halves of a cylinder which are 
combined by the hinge in order to facilitate opening the sleeve when necessary. 
The sidewall has five circular openings. The observation window at the front 
center is provided for observation of filament when the probe for filament tem- 
perature measurement is inserted through the temperature probe access hole 
and is brought into contact with the filament. The openings for the air inlet and 
air outlet are installed on individual sleeve to facilitate the variation of air tem- 
perature and air velocity locally. The additional access hole on the left-hand 
side was installed to allow illumination of the filament while photograph of the 
filament for the purpose of determining the filament diameter was taken by a 
camera through the front observation window. A thermocouple tip was placed 
on the inner wall of the sleeve to monitor the sleeve wall temperature. The air 
temperature inside the sleeve was measured by inserting a thermocouple through 
the temperature probe access hole, and the air velocity was measured by inserting 
an anemometer through the same access hole. 

Using this spinning system, the experimental optimization of the process for 
maximizing the tensile strength of filament obtained by drawing after spinning 
was carried out as follows: 

(1) After setting up the system, the extrusion was started at a prescribed rate 
with the melt a t  the spinning die fixed at  a suitable temperature. 

(2) The sleeve temperatures were set to an initial profile and the air flow was 
set to an initial pattern. 

(3) Then, the filament was taken up by the take-up roll at an initial take-up 
speed. 

(4) The spun yarn was drawn to a fixed draw ratio at a fixed set of conditions. 
The drawing conditions were fixed in this case because our study was focused 
at the optimal condition of the spinning with other conditions fixed. 

(5) 
(6) 

(7) 

After the drawing, the tensile strength of the filament was measured. 
Then, sequentially, systematic variations were made of the take-up speed, 

sleeve temperatures, and air flow rate. 
The run which gave the maximum tensile strength was repeated, and at 

this time measurements were made of the filament temperature and filament 
diameter at each of the sleeves. The filament temperature was measured by the 
contact null-point device,12 and the filament diameter was measured by close-up 
photography. 

(8) The temperature and diameter data were interpolated by the digital 
simulation technique, which will be described in Appendix A. 

Thus, by the experimental optimization and digital simulation for interpolating 
the experimentally measured temperature and diameter profiles, we could es- 
tablish the complete profiles of temperature and diameter for an optimized 
spinning process. 

Next, the extrusion rate was varied and then the same optimization experiment 
was repeated to achieve the maximum tensile strength of the filament. Again, 
from the experimental data, the optimal temperature profile and diameter profile 
were established by interpolating the data by the digital simulation technique. 
Then, the optimal profiles thus established were compared to each other to ex- 
amine the similarity in the real time history of temperature and elongation rate 
in the spinway. 
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Measurement and Simulation of Temperature and Diameter Profiles 

Figure 4 shows an example of the temperature and diameter profiles measured 
and interpolation of the data by digital simulation. Nylon 6 , l l  g/min, at 271°C 
(520OF) was extruded through a 20-0.0457-cm (18 mil) hole spinneret die and 
the yarn was taken up at a speed of 183 m/min (600 ft/min) at a position 4 m (13.3 
f t )  below the spinneret. The filaments passed through the sleeves shown in 
Figure 3. Seven sleeves were heated to (from top to bottom) 187,199,192,129, 
103,104, and 110OC. No forced flow of air was used, and at  a steady state the 
air temperature at the middle of sleeve was (from top to bottom) 102,83,76,56, 
47,45, and 38°C. 

In Figure 4, it is seen that the diameter measured fluctuated within a certain 
range. 

The digital simulation provides a fairly smooth interpolation of the temper- 
ature and diameter profiles. The contact null point method for the filament 
temperature measurement could not be used effectively at  the temperature near 
and above 200°C because the filaments stuck to the temperature probe. Al- 
though the spinway height was about 400 cm, the filament diameter leveled off 
at about 80 cm from the spinneret. 

From the data of T ( z )  and D ( z ) ,  the real time history of T ( t )  and d V ( t ) / d z  
can be generated by simple coordinate transformation of eq. (5) and by converting 
D to V. 

Example of the Real Time History of Filament Temperature and Rate 
of Elongation 

Figure 5 shows examples of the real time history of temperature and elongation 
rate which were calculated from the results of interpolation of experimental data. 
This is for the case of extruding 22.5 g/min of nylon 6 through a 14-10-mil- 

01 I I , l o  
0 20 40 60 8 0  100 

2 ,  cm 

Fig. 4. Temperature and diameter measured and from interpolation by digital simulation: (0) 
temperature measured; (0 )  temperature from simulation; ( 0 )  diameter from simulation; (-€) di- 
ameter measured (indicates range of fluctuation). 
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diam-hole spinneret die. While varying the take-up speeds to 152, 259, 396 
mlmin (500,850, and 1300 ftlmin), the sleeve temperatures were varied so that 
a t  each take-up speed maximum tensile strength after drawing was achieved. 
The drawing was carried out to a fixed draw ratio of 5.3 at one step over a heating 
block at  180°C. 

It is seen in Figure 5 that the temperature history and elongational rate history 
varied considerably with the variation of the take-up speed. As the take-up 
speed was increased, the temperature fell faster and the elongational rate was 
higher to start with, but once it reached maximum point, it also fell faster. 

With the differences in the temperature history and the elongational rate 
history between the three runs, the properties of the spun yarns also show dif- 
ferences. Among these three cases, the case with the take-up speed of 850 ftlmin 
resulted with yarn that gave the highest tensile strength when drawn (11.5 gl 
denier). 

Comparison of the Optimal Runs for Three Different Extrusion Rates 

With the spinning system set up as above, the extrusion rate was varied to 22.5, 
29.6, and 41.0 glmin, and at  each extrusion rate the optimal conditions for 
maximum tensile strength of the drawn yarn were established by experiments. 
With these optimal runs for three different extrusion rates, the real time history 
of temperature and elongation rate were compared in Figure 6. 

In this comparison, we observe a striking similarity between the real time 
histories of the three optimal runs with varying extrusion rates. Although there 
are slight differences, the points are falling very close to each other. This result 
confirms the validity of the hypothesis of unique correspondence between the 
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Fig. 6. T ( t )  and d V / d z ( t )  in optimal runs. 
1 sec, 

real time history of temperature and elongational rate and the properties of the 
spun yarn. Birefringence of the spun yarn was about 0.0025, and the ultimate 
tensile strength and ultimate elongation of the drawn yarns were 11.5 gldenier 
and 12% in the three optimal runs. 

One interesting feature of this plot shown in Figure 6 is that the temperature 
history can be characterized roughly by two straight lines. In the plot of elon- 
gational rate history, the curve falls almost in a straight line once it goes over the 
maximum point. The points where the elongational rate is at its maximum value 
corresponds very closely to the point where the temperature starts falling along 
the sharp downfall line. 

A t  this time, we are not yet able to offer a clear explanation as to why this 
particular real time history of the temperature and elongational rate give max- 
imum tensile strength of the drawn yarn. But it is clear that the optimal runs 
do show similarly in the real time history of the temperature and elongational 
rate. 

Limitations in the Application of the Similarity Criterion of Optimality 
to Industrial Spinning Processes 

A single filament spinning is naturally the simplest case to which application 
of the above described similarity criterion is easiest. As the number of filaments 
in the industrial spinning increases, the real time history varies from filament 
to filament, depending on the position of a particular filament within the bundle 
of the filaments. This nonuniformity of the real time history of individual 
filaments translates of course, into the noduniformity of the properties from 
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Fig. 7. Double-loop iterative procedure for numerical solution. 

filament to filament. As the final property of the yarn product will reflect only 
the average of these nonuniform filament-to-filament properties, it becomes 
extremely difficult to realize the improvement achieved with small-scale oper- 
ation in a large-scale operation. 

Nevertheless, the similarity criterion of optimality provides a means of guiding 
the experimental optimization and scale-up of the spinning process. When 
properly used, this could help save the cost of optimization and scale-up work 
of the melt spinning processes. 

CONCLUSIONS 

From the experimental and simulation studies described in this article the 
following conclusions can be drawn. 

When the melt spinning process is optimized for an objective function with 
a fiber material on two different rates of extrusion, the real time history of 
temperature and elongational rate between the two processes is similar. 
Therefore, this similarity can be used as a criterion in scale-up work in combi- 
nation with the simulation technique to achieve the scale-up work with less ex- 
periments. 
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APPENDIX A 

Digital Simulation of the Melt Spinning Process for the Interpolation 
of the Data of Temperature and Diameter Measurements 

Measurements of filament temperature and filament diameter for an optimized melt spinning 
can be made only at a limited number of points in the spinway because of the limitations associated 
with the facilities and operating time. To compare the temperature and diameter profiles of the 
scaled-up process with those of the original process, we need more number of points of data. So, 
for the purpose of interpolating the data between the points of measurements, the melt spinning 
process was simulated on a digital computer. 

Digital simulation of the melt spinning process in this case amounts to the iterative numerical 
solution of eqs. (12) and (19), i.e., 

(28b) 

Equation (28a) can be written in terms of the filament diameter by combining with eq. (15) and in- 
serting the mass balance relation of w = *D2pV/4, 

d T  -4h,(T - T,) 4h,(Tk4 - Tsk4) - 
P C P Z  = D D 

(29) 
_ = -  dD PFrheo(Z )D(z) 
dz 2WVT 

Frheo(Z) is given by eq. (22), and 1 1 ~  is given by 

1 1 ~  = AeBIT(dV/dz)y (30) 

in which A, B, and y are the constants determined by experiments. Value of h, in eq. (28b) can be 
estimated by use of eq. (21). The radiative heat transfer coefficient h, is given by 

h, = citF,F,/~ (31) 

where a and t are the Steffan-Boltzmann constant and emissivity, respectively, and F, and F, are 
the geometrical correction factor and view factor which depend on the geometry of the sleeves shown 
in Figure 3. 

In eq. (22) ,  the skin friction owing to air drag T is a term which is perhaps the most difficult to es- 
timate. This air drag effect was investigated in depth by the present a ~ t h 0 r s . I ~  The skin friction 
T is approximated by 

T = CfPaUf2/2 (32) 

where cf is the friction factor and Uf is the filament velocity relative to the air. cf is approximated 
by 

1 (33) 

where 

In eq. (34) a and u, are the filament radius and kinematic viscosity of the air. The coefficient X of 
eq. (33) is a correction factor for the effect of filament swaying in the spinway, and it is a function 
of the overall drag ~0efficient.I~ 

The pertinent boundary conditions for eqs. (28b) and (29) are 

T(0)  = T d  

D(0) = Di 
D(H) = Df 

(35) 



1178 KWON, BUTLER, AND PREVORSEK 

where T d  is the die temperature, Di is the initial filament diameter, and D f  is the take-up diameter. 
Thus, the diameter is specified a t  the beginning and end, making i t  a two-point boundary value 
problem. Also, we do not know the take-up tension a priori. Because of this nature of the equations 
and the boundary conditions, the simultaneous solutions of eqs. (28b) and (29) require a double-loop 
iteration procedure, which is illustrated in Fig. 7. 

When the numerical solutions are obtained for T ( z )  and D ( z ) ,  they are compared with the ex- 
perimentally measured data. If the T ( z )  and D ( z )  from the simulation match the experimental 
points well, then we convert the profiles of T ( z )  and D ( z )  into T ( t )  and dV( t ) /d t .  If there is a large 
discrepancy, the tensile viscosity coefficients, heat transfer coefficients, and air drag coefficients 
are reviewed and adjusted in such directions that the matching is improved. 

Figure 4 shows an example of the comparison of the temperature profile and diameter profile 
measured with those which resulted from the simulation. I t  has been found that the iterative scheme 
of Figure 7 gives a fast-converging solution when a suitable strategy of adjusting the value of FT is 
adopted. 
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